Proton Buncher Options for Muon Colliders

Applications of High Intensity Proton Accelerator Workshop

10/19-21/09

- 1. parameters of Colliders
- 2. Pion Production vs proton energy
- 3. Space Charge Tune Shift Calculation
- 4. Buncher Options
- 5. Conclusion

Pion production

- Production predicted by MARS15 with optimized target rad and length
- Peak is at 8 GeV
- \bullet Production, inc. cooling at 8 GeV=1.44 imes MARS14 ISS & FS2a at 24 GeV
- Production down to 51% at 60 GeV

Parameters

C of m Energy	1.5	3	TeV
Luminosity	0.77	3.4	$10^{34} \ {\rm cm}^2 {\rm sec}^{-1}$
Muons per bunch	2	2	10^{12}
Muon per 8 GeV p	0.008	0.007	
Protons per bunch at 8 GeV	170-250*	190-280*	10^{12}
Repetition Rate	15	12	Hz
Proton Driver power	3.5-4.8 *	3.0-4.3 *	MW

- * Protons & power requirements include/exclude MARS15 8 GeV gain
- In what follows I will assume the higher proton intensities and power

Space Charge Tune Shift (S Y Lee p110)

$$\Delta \nu = F_{dist} \left(\frac{2\pi R}{\sqrt{2\pi} \sigma_z} \right) \frac{N_p r_o}{2\pi \epsilon_N \beta_v \gamma^2}$$

- For Gaussian beams $F_{dist} = 3.8$
- \bullet ϵ_N is normalized (95%) emittance as used for protons at FNAL
- $\bullet \ \epsilon_{\perp} \ (= \epsilon_N/6)$ used in Muon Collider studies is normalized and rms
- Remember that normalized emittances, for the same beam dimensions and momentum, depend on mass
- The ring circumference is $C = 2\pi R$

$$\Delta \nu = 0.63 \left(\frac{C}{\sqrt{2\pi} \sigma_z} \right) \frac{N_p r_o}{2\pi \epsilon_\perp \beta_v \gamma^2}$$

FNAL Booster to check calculation

1. FNAL Booster at 400 MeV injection.

$$N_p=6~10^{10}$$
 circ=474 (m) $\sigma_z\approx$ 1.5 (m) $\Delta \nu=$ 0.4 (as published)

8 GeV Buncher Examples

- 2. Use booster-like ring for bunching 250 Tp to 1 m at 8 GeV Assume emittance giving same beam size as at booster injection ($\epsilon \propto \beta_v \gamma$) With single bunch, $\Delta \nu =$ 4.2 Very bad
- 3. Assume, with superconducting magnets (5T vs. 1T), we should get same acceptance with a smaller circumference with the needed straight sections, 200 (vs 474) m should be possible With single bunch, $\Delta \nu = 1.8$ Still not ok
- 4. Same as above but with 8 bunches separately extracted and merged after trombones (Ankenbrand)

 $\Delta \nu =$ 0.22 which is ok

Multiple beams on target

- $\beta^* = \sigma_{\perp}/\sigma_{\theta} = 1.66 \ mm/1.3 \ mrad = 1.3 \ m$ No prod loss in simulation
- Real situation is complicated by proton bending in 20 T magnet
- But appears practical

Loss of efficiency vs. azimuth and β^* (H Kirk X Ding)

- For 8 bunches worst loss $\approx 5\%$ Ave loss $\approx 2.5\%$
- No loss with $\beta^*=1.3$ m

5. Use of very large acceptance FFAG-like rings

e.g. 5-10 GeV FFAG designed for muon acceleration in ISS & Study 2a

- ullet 339 m circumference ring has momentum acceptance of order \pm 30% which we would not use
- It's muon acceptance = 30,000 ($\pi \ mm \ mrad$)
- Take rms emit as 1/10 of acceptance $\epsilon_{\perp}(\mu) = 3000 \ (\pi \ mm \ mrad)$
- Correct for masses $\epsilon_{\perp}(p)=3000\times 106/970=330~(\pi~mm~mrad)$ With single bunch, $\Delta\nu=$ 0.2 ok
- But for focus to σ_r =1.66 mm (1/3 jet radius): σ_θ = 23 mrad
- $4 \times \sigma_{\theta} = 93 \text{ mrad } \approx 3 \times \text{crossing angle}$
- So this is not an option

Higher energy Buncher Options

6. - 9. Same buncher ring acceptance and average bending field as #s 4 & 5

Get required proton intensity using optimized production vs. energy

then $\Delta \nu s = 0.22, 0.11$, and 0.03, for 20, 30, and 60 GeV

all ok

but heavy price in proton power if the MARS15 predictions are correct

10. But 12 GeV instead of 8 GeV

For circ=12/8*200=300 nb=4

 $\Delta \nu$ =0.22 ok

Loss of production 13%, but this is within the errors

Summary

		Е	circ	N	Р	sigz	$\sigma_{ heta}$		ϵ_N	ϵ_{\perp}	nb	$\Delta \nu$	
									95%	rms			
		${\sf GeV}$	m	Тр	MW	m	mrad		$\pi \mu m$	$\pi \mu m$			
	FNAL Booster												
1	booster at injection	0.4	474	0.06		1.5	1.3	ok	12	2	84	0.4	ok
	8 GeV Driver												
2	booster at 8 GeV	8.0	474	250	4.8	1.0	1.3	ok	112	19	1	4.2	X
3	SC ring	8	200	250	4.8	1.0	1.3	ok	112	19	1	1.8	X
4	SC ring & trombones	8	200	250	4.8	1	1.3	ok	112	19	8	0.22	ok
5	FFAG	8	393	250	4.8	1	23	X	2000	330	1	0.2	ok
	Higher Energy Driver												
6	SC ring	20	235	144	6.9	1	0.5	ok	112	19	1	0.22	ok
7	SC ring	30	348	102	7.3	1	0.4	ok	112	19	1	0.11	ok
8	SC ring	60	686	66	9.5	1	0.2	ok	112	19	1	0.03	ok

Conclusion

- Pion, and thus muon, production predicted to be maximum for 8 GeV protons
- Parameters require very intense (\leq 250 Tp) proton bunches with $\sigma_z \approx 1$ (m)
- Space charge tune shifts in a Booster like ring is excessive $(\Delta \nu \approx 4)$
- Space charge is reduced if higher bending fields allow small circumference (474 \rightarrow 200), but tune shift still unacceptable ($\Delta \nu \approx 2$)
- But ok if multiple (8) bunches with trombone (Ankenbrand) used
- And bringing such multiple beams onto the target appears ok
- The alternative of an FFAG ring with its huge accetance is ok for tune shift, but makes too large a beam on target
- Tune shift & beam size are ok for single bunches in super-conducting rings at higher proton energies ($E\geq20$ GeV), but MARS15 predicts need for higher proton power